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ABSTRACT

The Wilsonian paradigm of organizing phases of
matter by the symmetries they obey (and break!) is

a central tool for understanding equilibrium
statistical physics. Can such a program exist for
nonequilibrium systems as well? Here, we introduce
an effective theory framework for dissipative
classical systems both in and out of equilibrium,
which describes stochastic dynamics In the
presence of a thermal bath as well as nonthermal
active matter. The star is the role of (generalized)
time-reversal symmetry in constraining the effective
theory.

FORMALISM

Integrating out a bath can lead to noisy dissipative
equation of motion, with random noise é(t), e.g. an
overdamped harmonic oscillator:

dx

Y o= —w?x + ¢ (1)

t - —t is not a symmetry of this theory; have we
lost time-reversal symmetry?

« No: the statistics of the noise encode TRS in a
subtle way!

It is appropriate to move to probabilistic description:
keep track of P(x, t). Fokker-Planck Equation:

0P J 0° B

Frie —a(a) x/vy P+ QﬁP) = —-WP
Steady state: d,P,, = 0 and define P, (x) = e~ ®W).
Can derive detailed balance condition for this

theory:
Pa(t) = %2(t2) _  _(@(xy)-o))

P(x;(t1) = x1(t2)
Detailed balance corresponds to a symmetry of /!

W =ePW!e?®

This is time-reversal transformation of /. Time-
reversal partner of a dissipating theory is another
dissipating theory!

Idea: begin by constructing a ® based on the
problem’s symmetries, and use the time-
reversal transformation to constrain the Fokker-
Planck Equation!

Suppose degrees of freedom gq, .
eventually try to derive Langevin equations:

atCIa — fa(q) + f(t) <€a(t)$§b(t’)> — ZQab6(t o t’)

Assume a stationary distribution ®(q) and define
“chemical potentials”

We will
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APPLICATIONS

Equivalently, Fokker-Planck Equation
dP 0
dt — dq,

Need to enforce time reversal symmetry of /. We

could postulate a general form of I/

W = 0,My,(0p + Up)
= 0q(Vap — Qap)(0p + tp)
Where V = —VT and Q = Q. Separating f,(q) into
it's T-odd and T-even and part:
fa =Va + 94

Time-reversal symmetry separately constrains both
parts:

0
(faP 3, (Qabp)) = —-WP

dv
(1) aqa HaVe =0 (Vo = Vaptp + 0pVap)
a
1 (Fluctuation-
(2) ga = —EQabub dissipation
theorem!)

Finally, we have a Noether’s Theorem allowing us
to connect conserved quantities to symmetries of
W. Suppose F(q) is conserved. Then

W(Qa: aa) — W(Qa: 0q + (F))

MUTUAL FRICTION IN SUPERFLUIDS

Famous mutual friction effect emerges naturally

from our formalism! Consider a gas of point
vortices with circulations I; and locations r; =
(x;,v;). Their kinetic energy is

H=—22 % 1Ty log(|r; - 1)
i< j
Pick ® = H.
Their evolution equations can be shown to have a
Hamiltonian structure if x and y are understood as

canonical:
1
i 5} = = 0
l

Assemble all x,y into a vector

Qo = (X1 X2 . Y1 Y2 )
Dissipationless dynamics:
, 1
Qa = {Qa: H} = E{Qa» qb}.ub = Uq

Add minimal dissipation using (2):

W = aa(lg_l{Qa: CIb} + Q5ab)(ab + .ub)

i‘i=ui—yFi2 X U;

DISSIPATIVE AND ACTIVE RIGID BODY ROTATION

Finally, we can derive nontrivial dissipative and
active additions to Euler’s equations of rigid body
mechanics. Parameterize the location orientation of
the body by a rotation matrix R and angular
momentum L:

R;;(t) € SO(3), L€ so(3)

Poisson brackets and Hamiltonian:
1 _
{LI,L]} — EI]KLk H :ELI 1111 L]

{Rib L]} = Ri€Lyy

Equations of motion are:

0cR;; = Ryje U = Ryj€,0p

atL=_wX1w

SPONTANEOUS T-BREAKING AND NONRECIPROCITY

Nonreciprocity—interactions which violate Newton’s
third law—are paradigmatic of active matter.
e.q.) predator-prey dynamics

-

 No detailed balance. (Looks like Grouse chase
foxes!).

 But there is still symmetry if we reverse T and
also switch A & B. This is the symmetry that we
should enforce on W! “Generalized T~

As a simple model, consider nonreciprocal
Kuramoto model? : A spins try to align with B, while
B try to anti-align with A
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For ®(6,,05), pick a quadratic form with 2 minima:

/

1 K
b = A (J cos(0, —05) + ECOSZ(HA — 05))

We can add dissipationless term that satisfies (1),
just pick v, = vy =v(6, — 0p)

Add a dissipative term that still conserves angular

momentum in space frame?
L; = RyL,

The Noether theorem shift applied to F = L; gives,
schematically:
Wy, = A(OgrRe + 0 € L)(0gxRe + (01+ n) € L)
EOMs: w=u—Ap x L
O)L=—u X L—AL XL X u
Additionally, we can write down active terms

Wactive = 0rR A+ 0y B

where A and B are any antisymmetric matrices.

00, = Ap+v(04 — 0p)
0t0p = —Au+v(b, — 0p)

In the degenerate minima 66 = +A60, v has
opposite sign: direction of spinning depends on
minimum into which the system condenses at low
noise strength! Not controlled by the statistical
mechanics of @, but instead by the v terms.

We can explain T-breaking phases in more
general situations. Suppose ® has a continuous
symmetry G broken in equilibrium. Whole
configuration can ‘rotate’ along G. Parameterize by
R;; € SO(N) , and equation of motion is (to
guarantee closure in SO(N):

0cR; = Ri] Q]1

where Q = —Q!. Spontaneous T-breaking: ® has
also discrete minima and 2, invariant under
‘body frame’ symmetry can be built that
changes sign in between these minima

e.g.)
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