Approximating Geometry of Unknown Particles from Coupled Brownian Motion in Optical Tweezers

BACKGROUND INFORMATION

Brownian motion 1s described by the random motion of particles suspended in a fluid (liguid or a gas),
resulting from their collision with the fast-moving atoms or molecules in the fluid.

Optical tweezers are optical laser instruments that trap particles and microscopic objects with forces at a
focal point in their beams shown 1n Figure 1. These restorative forces counteract Brownian motion using
the conservation of momentum in photons fired in each beam of light. This only works because of the
scale, with smaller particles introducing more irregularity in the restoring forces.

The use of optical tweezers is extremely helpful in biophysics! Many use these instruments to hold
bacteria, microscopic cells, and DNA 1n place to manipulate them.
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Fig 1: Experimental configuration to observe thermal force fluctuations in a DNA molecule using optical tweezers.
Adapted from [1].

RESEARCH QUESTION

Is it possible to approximate the geometry of an unknown particle from its averaged Brownian trajectory in
an optical tweezer?

Trajectory Shape

We hypothesize that 1t 1s possible to extrapolate information about a particle’s geometry from its
averaged Brownian trajectory. However, as the geometric complexity of the unknown particle
increases, the percentage error of the estimate will also increase.

To test this hypothesis, we constructed and validated a general model for an asymmetric particle in an
optical trap using Python, split into blinded sub-teams to encode and estimate geometry-induced
parameters, and evaluated how estimation error changed with respect to a calibrated geometric
complexity measure.

OPTICAL TRAP EQUATION

Force acting on the particle

The equation used above [1] 1s meant to represent the instantaneous
velocity at any point in time, given by the derivative of the position B L v
vector. Here, our gamma term represents the particle's friction ar
coefficient, a constant ‘dampening’ value. Here, this 1s essentially
the amount of resistance that the particle experiences being in a

medium, where a higher gamma represents higher effective friction and therefore a lower velocity by 1/y.
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Particle friction coefficient White noise term

We know, 1n general, that the derivative of a potential energy function with respect to a position yields
the negative force function. Using this, we can realise that it 1s possible to represent the force acting on
our particle using the particle's potential energy function. This 1s evident in our equation as the
derivative of the particle's potential energy at a given position, with the negative term on the outside.

Finally, we have our mysterious Xi component added onto the end, which represents the white noise
properties (or stmulated Brownian motion) of our instantaneous velocity. This 1s caused by the random
collisions experienced by the particle from the fluid surrounding 1t, and therefore means the force at one
instant 1s entirely unrelated to the force at another instant, resulting in an inability to be expressed by
standard functions. However, we can represent this in another form as the square root of 2D times a
new white noise function W(t), where we now have an introduced influence of a ‘diffusion tensor’ (D)
on the velocity generated by this stochastic term.

When the equation above 1s approximated, we can then model this difficult-to-represent white noise
term with a random variable drawn from a Gaussian probability distribution, where we have [1]:
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Now, there 1s a relation of each iteration to time,
which is much more suitable for code.
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In our new equation, we now have the x-position at the current timestep expressed relative to its value at
the previous timestep (i-1). Our new force equation can be seen as having a stiffness represented by Ky
from the previous timestep, with a change in time. Although we still represent the white noise term as w,
we now have this Gaussian randomized variable sampled at discrete timesteps. Still, the term that has
remained constant for both equations 1s the Diffusion Tensor D.

OBJECT GEOMETRY

The diffusion tensors for a circle, an oval, and an arbitrary shape are listed below.
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A circle 1s perfectly symmetrical along any axis, so its translational diffusion coefficient 1s the same in
both the x- and the y-direction, and the rotational motion does not couple to its translational motion.
Similarly, in an oval where the center of diffusion 1s not offset from the center of mass, rotational and
translational motion do not couple to each other. However, since an oval does have x- and y-axes of
unequal length, diffusion coefficients will be different in the x- and y-directions.
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The diffusion tensor for an arbitrary shape introduces two new parameters: r, and r,, which represent the
offsets between the center of diffusion and the center of mass in the x- and y-direction in the frame of
reference of the particle. This offset results in coupling between rotational and translational diffusion.

1 /
deody(t) — meody(e)Fbodydt + 2Dbody deody(t)

R(0) :

Rotation matrix converting Body frame <> Lab frame.

The equation above shows how the diffusion tensor is incorporated into the general equation describing
particle dynamics, where a rotation matrix is used to convert the diffusion tensor in the body frame to
one observed in the lab frame.

BROWNIAN DYNAMICS OF ASYMMETRIC OBJECTS

Figure 2 below shows the plots returned when all trap and diffusion parameters are positive and definite,
when an asymmetric object 1s considered (left), alongside the averaged Brownian trajectory from 100
runs under deliberately strong trap forces to make the drift toward the origin visible within a short
simulation window (right).
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Fig 2: Brownian trajectory of an asymmetric particle; graphical demonstration of how two individual
Brownian trajectories compare to the mean of 100 trajectories.

The arrows 1n Figure 3 below indicate the instantaneous offset between the center of mass and the
center of diffusion. This offset rotates with the particle as 1t moves towards the center of the trap.
Whenever a trap force acts on the particle, this “lever arm” converts part of the trap force into a torque,
producing coupled translational and rotational motion. Figure 4 shows the limiting case where particle
motion 1s purely deterministic due to trap forces acting on it. This forms the basis for our regression-
based approach for estimating tensor entries under trapped conditions.
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Fig 3: Trajectory of a particle with instantaneous COM-
COD offset represented as lever-arm arrows.

Fig 4: Linear, deterministic drift of an
asymmetric particle

RESULTS

Using the parameters in Table 1 [2-7], we assigned each bacterium a normalized geometric complexity
using the following equations:
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Coccus Sphere 4.14E-15 4.14E-15 8.28E-15 No offset. No offset. 1.00E-6

Bacillus Rod 2.30E-13 1.80E-13 4.60E-02 2.35E-06 4.35E-07 5.00E-6 0.773

Vibrio Cholorae| Curved rod 6.05E-13 4.56E-13 6.78E-01 1.00E-06 1.50E-07 1.50E-6 0.912

Helicobacter

Pylori Helix

3.28E-13 2.43E-13 9.46E-02 2.00E-06 2.50E-07 3.25E-6 1.000

Table 1: Diffusion parameters and normalized geometric complexity for four bacteira.

Figure 5 below shows how covariance values change with bacteria of different geometries. It 1s worth
noting that while H. pylori is geometrically more complex than V. cholorae, x-0 and y-8 couplings
depend primarily on Dy; H. pylori’s spiral shape increases surface area and hence rotational drag, which
weakens 1ts translational-rotational coupling despite i1ts more complex geometry.
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Fig 5: Covariance of x, y, and 0 for different bacteria,
using average trajectory over 100 runs.
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Then, to estimate the entries of a particle’s diffusion tensor based on information from its average
trajectory under free diffusion conditions, we used the identity that on the interval [t,t+At],
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which assumes that at small At, particle motion is purely stochastic [9]. In an optical trap with trap
stiffness K« = K, = 1.00x10-* Nm~', the estimation uses the Ornstein-Uhlenbeck process [1,8], where A is
the linear regression matrix obtained by rearranging the OU equation:

AX, = AX,At + V2DAtE,, £, ~N(0,1).

Figure 6 below shows how RMS percentage error increases with geometric complexity. The trend
differs from Figure 4 as estimation error is mainly influenced by the particle’s COM-COD offset, which
amplifies noise in the regression.
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Fig 6: Graph of RMS of percentage error of estimated
tensor entries against normalized geomrtric complexity.

T T
0.4 0.6
Normalized Complexity Index (0-1)

CONCLUSION

Our results show that estimating particle geometry from Brownian dynamics is possible, but becomes
less reliable for more complex geometries, confirming that asymmetry 1s a limiting factor in this
estimation approach. Interestingly, introducing an optical trap presents a tradeoff: while the trap
confines motion and facilitates data collection in an experimental setting, it also suppresses stochastic
fluctuations and superimpose deterministic forces, which makes diffusion-based estimations less
representative of the particle’s geometry at higher stiffness values.

Having established that Brownian trajectories encode geometric information, future work could extend
this model to three dimensions, where axial offsets may introduce new coupling effects. Another
direction 1s to test whether trajectories are uniquely tied to a particle’s shape, or if distinct geometries
can produce indistinguishable motion.
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